

We are the Experts

IN PRECISION PART MANUFACTURING

WHAT WE DO

Cheetah Precision is a specialized full-service manufacturer of precision machined parts. Cheetah Precision can be your manufacturing partner from part inception, design & prototyping, all the way through to fully scaled production runs.

We have multiple machining divisions, all under one roof, to service your needs top to bottom. Our capabilities include: 5 Axis milling, lathe turning/milling, swiss machining, vertical and horizontal milling along with a host of secondary and post-secondary services. With our vast in-house capabilities, we can ensure speed, efficiency and quality in producing your parts.

INDUSTRIES SERVED

From 1-off medical and aerospace prototypes, to ultra-tight tolerance electro-position sensing parts, to giant hydraulic manifolds, Cheetah Precision boasts an arsenal of equipment capable of machining the most intricate parts that virtually any industry application may require.

PROTOTYPING New project? Need test parts? Cheetah Precision offers full prototype services for all industries and applications. We can produce initial one-off parts, advanced prototypes and assist you in going to full production of your parts. From start to finish, we are here to help.

MILITARY/DEFENSE/AEROSPACE ITAR Registered, ISO Certified and equipped with Cyber Secure communication. Cheetah Precision is recognized by the US Government and is ready to service your advanced high-tech production needs, and we are well versed in working with exotic materials, processes, and dynamic specs.

AUTOMOTIVE From the design board to the racetracks of the world, Cheetah manufactures precision based automotive parts. We specialize in Electric Automobile components, powered by solar and clean energy. See our parts on the Formula-E race circuit!!

MEDICAL DEVICE COMPONENTS In this rapidly changing market, Cheetah has a reputation for producing medical device components for some of the biggest industry names in the world.

FLUID HANDLING/HYDRAULIC Need a large manifold, valve body or another type of dynamic fluid handling part? We can do it! Milling, boring, tapping, turning and drilling are all done in-house at Cheetah Precision. And we can provide the quality testing required using our ZEISS CMM equipment.

FOOD SERVICE Food service equipment resides in its own realm of FDA requirements, exotic materials and specific part requirements. For over 40 years, Cheetah Precision has been producing parts for the food service industry's leading companies. Let our experience work in your favor.

QUALITY ASSURANCE

Have an intricate part? Have a large part? Bring them to us – we can make them for you, and have them inspected in our state-of-the-art quality CMM department. We boast an arsenal of the latest ZEISS testing equipment.

EQUIPMENT

Big or small, we do it all! Bring Cheetah Precision your largest tight-tolerance parts – we feature some of the industry's largest table sizes. Please refer to the online equipment list to gain an understanding of our machines.

MAKINO F9

The F9 large, vertical machining center is designed to provide power, speed, precision, and versatility.

DMG Mori DMU 50 – 5 Axis Milling Machine

Unparalleled accuracy, productivity, and quality.

MAKINO a92 High efficiency for large part production.

Kitamura Bridgecenter

Ultra high speed and high precision.

IN PRECISION PART MANUFACTURING

DECIMAL AND MILLIMETER EQUIVALENTS

DECIMALS MILLIMETERS		DECIMALS MILLIMETERS	MM INCHES	MM INCHES
0.015625 — 0.397	33	0.515625 -13.097	.1— .0039	46-1.8110
.03125 — 0.794	17 64	53125 -13.494	.2— .0079 .3— .0118	47— 1.8504 48—1.8898
	³² 35		.4— .0157	49-1.9291
.046875 — 1.191	64	.546875 — 13.891	.5— .0197 .6— .0236	50-1.9685
.0625 — 1.588	9 ⁰⁴ 16 ₂₇	5625 —14.288	.6— .0236 .7— .0276	51—2.0079 52—2.0472
.078125 — 1.984	<u>31</u> 64	.578125 — 14.684	.8— .0315	53-2.0866
.09375 — 2.381	<u>19</u> 04 32 20	59375 -15.081	.9— .0354 1— .0394	54—2.1260 55—2.1654
.109375 - 2.778	39	.609375 -15.478	20787	56-2.2047
.1250 -3.175	5 64 8 41	6250 - 15.875	3— .1181 4— .1575	57—2.2441 58—2.2835
	8 41		51969	59-2.3228
.140625 — 3.572	21 64	.640625 — 16.272	62362	60-2.3622
.15625 — 3.969	22	65625 —16.669	7— .2756 8— .3150	61—2.4016 62—2.4409
.171875 — 4.366	43	.671875 — 17.066	9— .3543	63-2.4803
.1875 — 4.763	11 04 16 45	6875 -17.463	10— .3937 11— .4331	64—2.5197 65—2.5591
.203125 - 5.159	45	.703125 - 17.859	12— .4724	66-2.5984
.21875 - 5.556	23 ⁶⁴	71875 -18.256	13— .5118 14— .5512	67—2.6378 68—2.6772
	32 47		155906	69-2.7165
.234375 — 5.953		.734375 —18.653	16— .6299	70-2.7559
.2500 — 6.350	$\frac{3}{4}$ 64	7500 —19.050	17— .6693 18— .7087	71—2.7953 72—2.8346
.265625 — 6.747	45	.765625 — 19.447	19— .7480	73-2.8740
.28125 — 7.144	25	78125 —19.844	20— .7874 21— .8268	74—2.9134 75—2.9528
.296875 - 7.541	³² 51	.796875 -20.241	22— .8661	76-2.9921
.3125 -7.938	13 64 16 52	8125 -20.638	23— .9055 24— .9449	77—3.0315 78—3.0709
	16 53		25— .9843	79-3.1102
.328125 — 8.334	27 64	.828125 —21.034	26-1.0236	80-3.1496
.34375 — 8.731	20	84375 —21.431	27—1.0630 28—1.1024	81—3.1890 82—3.2283
.359375 — 9.128	55	.859375 —21.828	29-1.1417	83-3.2677
.3750 — 9.525	7 64 8 57	8750 -22.225	30—1.1811 31—1.2205	84—3.3071 85—3.3465
.390625 — 9.922	01	.890625 -22.622	32-1.2598	86-3.3858
.40625 - 10.319	29 64	90625 -23.019	33—1.2992 34—1.3386	87—3.4252 88—3.4646
	³² 59		35-1.3780	89-3.5039
.421875 — 10.716	15 64	.921875 —23.416	36-1.4173	90—3.5433 91—3.5827
.4375 — 11.113	16	– .9375 – 23.813	37—1.4567 38—1.4961	92—3.6220
.453125 — 11.509	<u>01</u> 64	.953125 —24.209	39-1.5354	93-3.6614
.46875 - 11.906	31	96875 -24.606	40—1.5748 41—1.6142	94—3.7008 95—3.7402
.484375 - 12.303	03	.984375 - 25.003	42-1.6535	96-3.7795
.5000 -12.700	64	-1.000 -25.400	43—1.6929 44—1.7323	97—3.8189 98—3.8583
		1.000 -20.400	45-1.7717	99— 3.8976
1 mm = .03937"		.001" =	.0254 mm	100-3.9370

1 mm = .03937"

CHEETAH

1

64

3

64

5

64 3

64

9

64

11

64

13

64

15

64

17

64

19

64

21

64 11

64

25

64 13

64

29

64 <u>15</u> 32

31

64

1 32

32 7

5 32

7 32

9 32

32 23

32 27

<u>1</u> 16

<u>1</u> 8

<u>3</u> 16

<u>1</u> 4

5 16

<u>3</u> 8

7 16

<u>1</u> 2

.001" = .0254 mm